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radiation sensitivity. The aim of further work along these lines is to find
ways of picturing biological effects of radiation and premises to be used in
their interpretation.
Summary.-(1) Pepsin-albumin films may be inactivated by small

doses of x-rays. Doses of 'about 100 r produce about 50 per cent inactiva-
tion.

(2) The sensitivity to radiation depends on the physical configuration
of the molecules. It may be varied by surface compression.

(3) Calculations suggest that the effects of a single ra.diation event
(ionization or radical production) may be spread to include a large
numbei of enzyme molecules.

* This work has been supported by a grant from the Committee on Growth, NATIONAL
RESBARCH COUNCIL, acting for the American Cancer Society. The authors wish to
thank Dr. A. C. Faberge for carrying out the dosimetry.
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NOTES ON INTEGRATION, I
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Communicated June 3, 1948

The theory of integration, because of its central rBle in mathematical
analysis and geometry, continues to afford opportunities for serious in-

vestigation. The need for extending and rounding out the classical
studies of Riemann, Stieltjes and Lebesgue has stimulated considerable
interest not only in new aspects of the theory but also in the simplification
and perfection of the old. The present series of communications is in-
tended to outline a treatment which, while exploiting fully the possibilities
for simplification, will attain 4 high degree of generality. Among the
ma.ny contributions to the mathematical literature which have provided
material for our handling of the subject we wish to cite above all an im-
portant paper of Daniell.- In spite of the fact that the basic ideas in the
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present discussion are the common property of mathematicians, some of
our results appear to be novel. If they are, it is because we have chosen
to introduce and exploit an a7daptation of the concept of an "upper
integral," making this the technical foundation of the whole theory.2
With Daniell, we assume an initially given elementary integral E(f ) which

is defined for a non-void class (e of real functions f, called the elementary
functions, with a fixed abstract set X as domain. Specifically, our basic
postulates are the following slight modifications of those given by Daniell:

(1) (E is a non-void class of real functions f on an arbitrary non-void
domain X, such that af, f+ g, and If are in e whenever a is a real number
and f and g are both in Y; and E is a real-valued functioia (or operation)
defined over (Y, such that

E(af) = aE(f), E(f + g) = E(f) + E(g), E(IfI) _ 0;

(2) iff and fn are in e and If| _ E IfI, then

E(|Xf ) _E E(|fn ).
n=1

At a certain stage in the development, we shall introduce the further
requirement that

(3) iff is in (, then min (1, f)=2(1 + f-|I 1 -f ) is in .(
Technically (1) means that (E is a vector lattice under its natural ordering
and E is a positive linear functional on (Y. The r8les played by (2) and
(3) will be brought out below.
In many important instances of the getieral theory, (Y consists of the

continuous real functions with compact nucleus3 on a locally compact
space X. Under these conditions (2) and (3) both follow from (1): (3) is
evident, while (2) is established by constructing a non-negative elementary
function g strictly positive on the nucleus of f and demonstrating the

existence of an integer m = m(e), e > 0, such that jj - eg 5 Ef
n=1

By way of illustration we cite the Riemann integral on a bounded closed
domain in n-space or on an n-dimensional manifold, and the Haar integral
on a locally compact topological group.4 Other important instances of
the general theory are constructed from distributions of simple type given
in advance on X: in X a class of subsets is distinguished and each dis-
tinguished set Y is assumed to bear a non-negative weight or measure,
,u( Y; the real linear lattice combinations of the characteristic functions of
distinguished sets are taken as the elementary functions; and the ele-
mentary integral is then determined in harmony with the requirement
that E(f) = ,u( Y) for the characteristic function f of any -distinguished set
Y. The detailed construction is not difficult once the appropriate tech-
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niques have been provided for relating the data to the requirements of
(1) and (2). We mention in particular that the given measure must be
additive: if Y, Z, and Y u Z are distinguished sets, and Y and Z are
disjoint, then ,u(Y u Z) = ,u(Y) + ,u(Z). The theory of the Lebesgue-
Stieltjes integral illustrates the general concepts which have just been
described.
We shall consider the class 5 of all extended-real functions defined on

the domain X. The admission of + o and - o as functional values
renders a little awkward the defiiition of such algebraic combinations of
functions as 0 f, f + g and f - g. In the present context it is appropriate
to let 0.f, f + g,j - g designate (ambiguously!) any function in (M which
assumes the respective values 0 -f(x), f(x) + g(x),-f(x) - g(x) at every x
where the latter quantities are defined. As we shall see, this ambiguity
raises no serious obstacles in the sequel.

Over (M we define an extended-real function N by putting

(4) N(f) = inf {X; X = EE(IfnI), Ifi < E Ifnl,fnE @}
n=l n=1

For non-negative functions, N(f ) has the properties of an upper integral;
and for certain non-negative functions it coincides with the integral which
is presently to be defined. Thus we already have in our possession the
mathematical object upon which our interest is concentrated. The
formal definition given in (4) is capable of an informal presentation which
brings out clearly and rather simply its intuitive justification. Con-
fining our attention to non-negative functions, we may regard (4) as the
condensed description of a measuring process. We may think of e as
providing a stock of measuring rods, the non-negative elementary functions,
by means of which the non-negative functions in 5 are to be gauged.
Each measuring rod has a magnitude given by its elementary integral.
The basic measuring process consists in choosing from stock such an
infinite sequence of measuring rods fn = Ifn > 0 that by addition they
combine to surpass f = If 2 0 in the sense indicated by the inequality

f _ f The real number X = -E(fn) obtained by adding together
n=l n=l

the magnitudes of the particular measuring rods thus employed is then
accepted as an estimate, generally in excess, of the magnitude of f. Repe-
titions of this basic process furnish successively better estimates, con-
vergent to the quantity N(f), when suitable precautions are taken. It
is, of course, conceivable that the basic process will fail to produce any
real numbers as estimates of the magnitude of a particular function f

either because the inequality f _ Zfn cannot be realized, or because it
n=1
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implies the divergence of the series Ej E(fn). Under these circumstances
n=l

the formal definition requires that we take N(f) = + o in accordance
with a well-known convention. The principal properties of the function
N, all easily deduced from (4), can be listed as follows:

(5) 0. N(f) _ +a0;
(6) N(af) = alN(f) unless = 0 and N(f) = + o;

(7) If - E fn|I implies N(f) < EN(fn);
n-1 n=1

(8) N(jfI) = N(f).
By specializing (7) we see that N(f + g) < N(f) + N(g), and that

N(f) _ N(g) whenever jf| _ |gl. The ambiguity of the expressions
a]f, f + g does not affect the truth of these relations; nor does (2) enter
into their proofs. It is only in deriving the property

(9) when f is elementary, N(f) = E( IfI)
that (2) finds any direct application in our theory. Clearly (2) and (9)
are equivalent assertions, so that whenever we use (9). in the sequel we
also use (2) in an essential though implicit manner.

Henceforth we shall be concerned primarily with that part, a, of (
which is characterized by the inequality N(.f) < + co. The expression
N(f - g) has in a the properties of a pseudo-metric. Hence, if we identify
functionsf and g for which N(f - g) = 0, we can treat a as a real normed
vector-lattice with N as its norm-function. The detailed discussion
involves attention to those functions f, called null functions, for which
N(f) = 0. In this connection it is convenient to introduce also the follow-
ing definitions: a subset ofX is called a null set if its characteristic function
is a null function; the phrase "almost everywhere" signifies "with the
exception of the points of a certain null set." By the use of (7) it is easy
to show that a function is a null function if and only if it vanishes almost
everywhere; that any set covered by a countable family of null sets is a
null set; and that every function in a is finite almost everywhere. These
and similar properties show that the null sets play here a r6le analogous to
that played by the sets of measure zero in the Lebesgue theory. The
identification of functions in a is now seen to remove all ambiguity in the
meaning of the expressions af, f + g, f - g since every function in j is
finite almost everywhere. Once these more or less routine matters are
disposed of, we can establish the most important single result6 concerning
0, namely:

(10) the normed vector space a is complete (and hence a Banach
space).
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The proof will be sketched. Let {fn be a Cauchy sequence in @.
Without loss of generality we may suppose that f,n is everywhere finite
(otherwise we could modify fn on a null set so that the resulting function
would be everywhere finite) and that N(fn+l- fn) _ 2-n (otherwise we
could choose a subsequence which converges with the desired rapidity).

The series Ifil + E fn+i -fn has the sum g in . Since N(g) < N(f1) +
aa n= Go

EN(fn+ -fn) = N(fi) + E2-n < N(fi) + 1 < + co by (7), g is actually
n =1 n=l

in 0. Hence the series above converges almost everywhere, and so also
co

do the series fi + E(fn+1-fn) and the sequence tfn1. Let f be any func-
n-=1

tion in 5 which is equal to the sum of the latter series or, equivalently, to
lim fn wherever these quantities are defined: we may, for example, take

f = limsupfnorf = liminffn. Wethenhave IfI < g,N(f)< N(g)< + co,
Mn-)- n00 co c co

fe a. Moreover If fkl _ fn+1 - fnI and N(f fk) . EN(fn+1 -
n=k n=k

fn) _ 2-k+ , so that the Cauchy sequence {fn} hasf as its limit in . This
completes the proof.
On a we now define the function F by putting F(f) = N(f+) -N(f-)

where f+ = (If)+f)2°f=2(IfI -f) 0. Since If+-g+I <

If- gj and |f- |g _ f .g |, this function is continuous in accordance
with the inequalities F(f) -F(g) < N(f+) - N(g+)I + N(f-) -
N(g-) <.N(f+ - g+) + N(f- -g-) < 2N(f - g). On e .cr we have
F(f) = E(f+) - E(f-) = E(f) by (9). Let 2 be the closure of e in a,
and let L be the contraction of F to 2. A function in V is said to be
integrable, and its general integral is taken to be L(f) = N(f+) - N(f-).
The integrable functions are the.functions which can be approximated by
elementary functions in the sense of the norm for a. On the other hand,
the results of the preceding paragraph show that every integrable function
f is equal almost everywhere to lim sup fn, where 1fnI is a suitably chosen

sequence of elementary functions. The following assertions concerning
the general integral can now be justified:

(11) 2 and L enjoy the properties assumed for e and E, respectively,
in (1), 2 being a complete vector subspace of a with norm N(f) = L(|If I);

(12) the sum of a positive-term series of integrable functions is
integrable if and only if the corresponding series of integrals converges
(necessarily to the integral of the sum-function).
It is clear that (11) follows from (1) by simple continuity arguments.
We observe that (12) may be regarded as a sharpened version of (2) formu-
lated in terms of 2 and L; and also that (12) is a generalized form of the
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theorem of B. Levi in the Lebesgue theory. A proof of (12) will now be
*a ~~~~~~~~~~m

sketched. Letf = ,f, wherefn > 0 andfn-e 2. Ifffe a, then EL(fn) =
m m n-=1i. X n-=1

L(E3fn) = N(Efn) < N(f ) <+ co so that jL(fn) is a convergent positive-
n =1 n-1 n_1

term series. On the other hand, if a- = FL(fn) < + co, we have N(f) _
m amw n-i m
EN(fn) = EL(fn) < + co so that f c a. Moreover N(f- fn) <
n-I n=1 n-I

Xc. co m m
E N(fn) = E L(fn) so that f,fn converges in 2 to f and L( fn) con-
n=m+lnm+l n=1

verges to L(f), with the result that L(f) = a. From (12) it is now possible
to deduce other convergence theorems which correspond in our general
theory to such standard results as the Lebesgue dominated-convergence
theorem and the Fatou theorem in the Lebesgue theory. As the classical
arguments apply without change to the present situation we do not need
to go into detail.

Let (m be the class of all positively homogeneous continuous real func-
tions of m real variables Xi, ..., Xm. To (m belong the functions X1, ....
Xm and all the linear lattice combinations which can be formed from them.
On the other hand, it is know,n that on the compact set where jX, +

+ XmI = 1 any continuous function can be uniformly approximated
by such combinations.6 Hence if (p e (m we can find suth a combination
O'k that 1/Ok- llk on,this set. It follows that 'P - .kl_ l/k
(IX,I + +IXmI) Since 4,1k(fl, ..., fm) is integrable when fi,
fm are, as we noted in (11), and since

N((p(fi, ..., fm) -4k(fl, *-- fm)) _ (N(fi) + .-. + N(fm))/k O 0

when k co, we conclude that (p(f', ... ,fm) is integrable. The dominated-
convergence theorem enables us to extend this result to the positively
homogeneous Baire functions:

(13) if sp is a positively homogeneous real function of m real variables
X1, . . .,Xm whose contraction to the set X, + . . . + X. = 1 is a bounded
Baire function, and if f','. . ., fm are integrable, then 'p(fp, ..., fm) is in-
tegrable.
In order to rid ourselves of the restriction to homogeneous functions,
we now assume that (3) holds.7 We find that (13) can be replaced by:

(14) if s is a finite, not necessarily bounded Baire function of m real
variables Xi, ..., Xm such that p(0, ..., 0) = 0, and if fi, .. ., fn, g are

integrable functions such that | '(fi,.p . . I'm) _ g then s(pCfi, .. . fm)
is integrable.
Indeed, if the constant function everywhere equal to 1 is in e or in 2,
we can also eliminate the condition Vp(, ..., 0) = 0. By further applica-
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tion of the dominated-convergence theorem we can extend (13) and (14)
to functions sp of infinitely many variables.
The principal processes for manipulating the general integral have now

been justified. In our second note we shall review some of their applica-
tions and consequences.
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In a compressible medium, let the stress tensor be T,, the specific internal
energy e, the specific entropy s, the specific volume a. Then the means
pressure Pm and the pressure p are given by the definitions

~~~~.(1
Pm-r--1T-, p' 8 1P 3PUN

Let Vi be the velocity vector; then the deformation and rotation tensors.

dij and cvi,, respectively, are given by the definitions

dt- (Vs1 + V1s) (V.,i - Vi, i) (2)

If a secondary stress tensor WJ be given by the definition

WJ = Pa + Tl, (3)

then the dissipation function ¢, given by the definition

(4)
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